Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Curr Biol ; 31(9): 1918-1930.e5, 2021 05 10.
Artigo em Inglês | MEDLINE | ID: mdl-33705718

RESUMO

Polar subcellular localization of the PIN exporters of the phytohormone auxin is a key determinant of directional, intercellular auxin transport and thus a central topic of both plant cell and developmental biology. Arabidopsis mutants lacking PID, a kinase that phosphorylates PINs, or the MAB4/MEL proteins of unknown molecular function display PIN polarity defects and phenocopy pin mutants, but mechanistic insights into how these factors convey PIN polarity are missing. Here, by combining protein biochemistry with quantitative live-cell imaging, we demonstrate that PINs, MAB4/MELs, and AGC kinases interact in the same complex at the plasma membrane. MAB4/MELs are recruited to the plasma membrane by the PINs and in concert with the AGC kinases maintain PIN polarity through limiting lateral diffusion-based escape of PINs from the polar domain. The PIN-MAB4/MEL-PID protein complex has self-reinforcing properties thanks to positive feedback between AGC kinase-mediated PIN phosphorylation and MAB4/MEL recruitment. We thus uncover the molecular mechanism by which AGC kinases and MAB4/MEL proteins regulate PIN localization and plant development.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Arabidopsis/genética , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Transporte Biológico , Polaridade Celular , Regulação da Expressão Gênica de Plantas , Ácidos Indolacéticos , Proteínas de Membrana Transportadoras/genética , Células Vegetais/metabolismo , Raízes de Plantas/metabolismo
2.
Front Plant Sci ; 3: 250, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-23162562

RESUMO

Signaling and trafficking over membranes involves a plethora of transmembrane proteins that control the flow of compounds or relay specific signaling events. Next to external cues, internal stimuli can modify the activity or abundance of these proteins at the plasma membrane (PM). One such regulatory mechanism is protein phosphorylation by membrane-associated kinases, several of which are AGC kinases. The AGC kinase family is one of seven kinase families that are conserved in all eukaryotic genomes. In plants evolutionary adaptations introduced specific structural changes within the AGC kinases that most likely allow modulation of kinase activity by external stimuli (e.g., light). Starting from the well-defined structural basis common to all AGC kinases we review the current knowledge on the structure-function relationship in plant AGC kinases. Nine of the 39 Arabidopsis AGC kinases have now been shown to be involved in the regulation of auxin transport. In particular, AGC kinase-mediated phosphorylation of the auxin transporters ABCB1 and ABCB19 has been shown to regulate their activity, while auxin transporters of the PIN family are located to different positions at the PM depending on their phosphorylation status, which is a result of counteracting AGC kinase and PP6 phosphatase activities. We therefore focus on regulation of AGC kinase activity in this context. Identified structural adaptations of the involved AGC kinases may provide new insight into AGC kinase functionality and demonstrate their position as central hubs in the cellular network controlling plant development and growth.

3.
Dev Cell ; 22(1): 211-22, 2012 Jan 17.
Artigo em Inglês | MEDLINE | ID: mdl-22264733

RESUMO

The cell types of the plant root are first specified early during embryogenesis and are maintained throughout plant life. Auxin plays an essential role in embryonic root initiation, in part through the action of the ARF5/MP transcription factor and its auxin-labile inhibitor IAA12/BDL. MP and BDL function in embryonic cells but promote auxin transport to adjacent extraembryonic suspensor cells, including the quiescent center precursor (hypophysis). Here we show that a cell-autonomous auxin response within this cell is required for root meristem initiation. ARF9 and redundant ARFs, and their inhibitor IAA10, act in suspensor cells to mediate hypophysis specification and, surprisingly, also to prevent transformation to embryo identity. ARF misexpression, and analysis of the short suspensor mutant, demonstrates that lineage-specific expression of these ARFs is required for normal embryo development. These results imply the existence of a prepattern for a cell-type-specific auxin response that underlies the auxin-dependent specification of embryonic cell types.


Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/embriologia , Arabidopsis/metabolismo , Linhagem da Célula , Ácidos Indolacéticos/farmacologia , Raízes de Plantas/embriologia , Sementes/crescimento & desenvolvimento , Fator 1 de Ribosilação do ADP/metabolismo , Arabidopsis/efeitos dos fármacos , Transferência Ressonante de Energia de Fluorescência , Regulação da Expressão Gênica de Plantas , Genes de Plantas , Hibridização In Situ , Reguladores de Crescimento de Plantas/farmacologia , Raízes de Plantas/efeitos dos fármacos , Raízes de Plantas/metabolismo , Plantas Geneticamente Modificadas/efeitos dos fármacos , Plantas Geneticamente Modificadas/genética , Plantas Geneticamente Modificadas/metabolismo , Sementes/efeitos dos fármacos , Sementes/metabolismo , Transdução de Sinais
4.
Plant J ; 68(4): 597-606, 2011 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-21831209

RESUMO

The plant hormone auxin triggers a wide range of developmental and growth responses throughout a plant's life. Most well-known auxin responses involve changes in gene expression that are mediated by a short pathway involving an auxin-receptor/ubiquitin-ligase, DNA-binding auxin response factor (ARF) transcription factors and their interacting auxin/indole-3-acetic acid (Aux/IAA) transcriptional inhibitors. Auxin promotes the degradation of Aux/IAA proteins through the auxin receptor and hence releases the inhibition of ARF transcription factors. Although this generic mechanism is now well understood, it is still unclear how developmental specificity is generated and how individual gene family members of response components contribute to local auxin responses. We have established a collection of transcriptional reporters for the ARF gene family and used these to generate a map of expression during embryogenesis and in the primary root meristem. Our results demonstrate that transcriptional regulation of ARF genes generates a complex pattern of overlapping activities. Genetic analysis shows that functions of co-expressed ARFs converge on the same biological processes, but can act either antagonistically or synergistically. Importantly, the existence of an 'ARF pre-pattern' could explain how cell-type-specific auxin responses are generated. Furthermore, this resource can now be used to probe the functions of ARF in other auxin-dependent processes.


Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/genética , Ácidos Indolacéticos/metabolismo , Família Multigênica , Fatores de Transcrição/metabolismo , Arabidopsis/embriologia , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Perfilação da Expressão Gênica , Regulação da Expressão Gênica no Desenvolvimento , Regulação da Expressão Gênica de Plantas , Regiões Promotoras Genéticas , Fatores de Transcrição/genética
5.
Curr Top Dev Biol ; 91: 1-27, 2010.
Artigo em Inglês | MEDLINE | ID: mdl-20705177

RESUMO

Embryogenesis in plants transforms the zygote into a relatively simple structure, the seedling, which contains all tissues and organs that later form the mature plant body. Despite a profound diversity in cell division patterns among plant species, embryogenesis yields remarkably homologous seedling architectures. In this review, we describe the formative events during plant embryogenesis and discuss the molecular mechanisms that regulate these processes, focusing on Arabidopsis. Even though only a relatively small number of factors are known that regulate each patterning step, a picture emerges where locally acting transcription factors and intercellular signaling contribute to the specification and spatio-temporal coordination of the various cell types in the embryo. Notably, several patterning processes are controlled by the plant hormone auxin. Most regulators that were identified in Arabidopsis have orthologs in other sequenced plant genomes, and several of these are expressed in similar patterns. Therefore, it appears that robust conserved mechanisms may underlie pattern formation in plant embryos.


Assuntos
Padronização Corporal/fisiologia , Cotilédone/embriologia , Proteínas de Homeodomínio/metabolismo , Ácidos Indolacéticos/metabolismo , Meristema/fisiologia , Reguladores de Crescimento de Plantas/biossíntese , Plantas/embriologia , Transdução de Sinais/fisiologia , Transporte Biológico/fisiologia , Linhagem da Célula/fisiologia
6.
Nature ; 464(7290): 913-6, 2010 Apr 08.
Artigo em Inglês | MEDLINE | ID: mdl-20220754

RESUMO

Acquisition of cell identity in plants relies strongly on positional information, hence cell-cell communication and inductive signalling are instrumental for developmental patterning. During Arabidopsis embryogenesis, an extra-embryonic cell is specified to become the founder cell of the primary root meristem, hypophysis, in response to signals from adjacent embryonic cells. The auxin-dependent transcription factor MONOPTEROS (MP) drives hypophysis specification by promoting transport of the hormone auxin from the embryo to the hypophysis precursor. However, auxin accumulation is not sufficient for hypophysis specification, indicating that additional MP-dependent signals are required. Here we describe the microarray-based isolation of MP target genes that mediate signalling from embryo to hypophysis. Of three direct transcriptional target genes, TARGET OF MP 5 (TMO5) and TMO7 encode basic helix-loop-helix (bHLH) transcription factors that are expressed in the hypophysis-adjacent embryo cells, and are required and partially sufficient for MP-dependent root initiation. Importantly, the small TMO7 transcription factor moves from its site of synthesis in the embryo to the hypophysis precursor, thus representing a novel MP-dependent intercellular signal in embryonic root specification.


Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/embriologia , Arabidopsis/metabolismo , Proteínas de Ligação a DNA/metabolismo , Regulação da Expressão Gênica de Plantas , Raízes de Plantas/embriologia , Raízes de Plantas/metabolismo , Fatores de Transcrição/metabolismo , Arabidopsis/citologia , Fatores de Transcrição Hélice-Alça-Hélice Básicos/metabolismo , Desenvolvimento Embrionário/genética , Genes de Plantas/genética , Ácidos Indolacéticos/metabolismo , Meristema/citologia , Meristema/embriologia , Meristema/metabolismo , Análise de Sequência com Séries de Oligonucleotídeos , Raízes de Plantas/citologia , Transdução de Sinais
7.
Proc Natl Acad Sci U S A ; 107(6): 2705-10, 2010 Feb 09.
Artigo em Inglês | MEDLINE | ID: mdl-20133796

RESUMO

Like animals, the mature plant body develops via successive sets of instructions that determine cell fate, patterning, and organogenesis. In the coordination of various developmental programs, several plant hormones play decisive roles, among which auxin is the best-documented hormonal signal. Despite the broad range of processes influenced by auxin, how such a single signaling molecule can be translated into a multitude of distinct responses remains unclear. In Arabidopsis thaliana, lateral root development is a classic example of a developmental process that is controlled by auxin at multiple stages. Therefore, we used lateral root formation as a model system to gain insight into the multifunctionality of auxin. We were able to demonstrate the complementary and sequential action of two discrete auxin response modules, the previously described Solitary Root/indole-3-Acetic Acid (IAA)14-Auxin Response Factor (ARF)7-ARF19-dependent lateral root initiation module and the successive Bodenlos/IAA12-Monopteros/ARF5-dependent module, both of which are required for proper organogenesis. The genetic framework in which two successive auxin response modules control early steps of a developmental process adds an extra dimension to the complexity of auxin's action.


Assuntos
Arabidopsis/efeitos dos fármacos , Ácidos Indolacéticos/farmacologia , Raízes de Plantas/efeitos dos fármacos , Arabidopsis/genética , Arabidopsis/crescimento & desenvolvimento , Proteínas de Arabidopsis/genética , Ciclinas/genética , Fatores de Transcrição E2F/genética , Regulação da Expressão Gênica no Desenvolvimento/efeitos dos fármacos , Regulação da Expressão Gênica de Plantas/efeitos dos fármacos , Morfogênese , Reguladores de Crescimento de Plantas/farmacologia , Raízes de Plantas/genética , Raízes de Plantas/crescimento & desenvolvimento , Plantas Geneticamente Modificadas , Proteínas Serina-Treonina Quinases , Receptores de Superfície Celular/genética , Reação em Cadeia da Polimerase Via Transcriptase Reversa
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...